Bambu Recurse
Supporting recursion in Bambu HLS

Andrew Kim & Caspar Popova




Supporting recursion in Bambu HLS

Recursive
C/C++

.

Bambu HLS

RecursionRemoval

Verilog

.




Why support recursion?

e Natural algorithm representation (traversal, backtracking, sort)
e Reduces rewriting effort compared to iterative counterparts
e C(Clarity, less complex than iterative implementations




Lack of Recursion Support

HLS tools: Bambu, Legup, Vitis

Bambu HLS:

e Full HLS pipeline
e Open Source
e Proven utility in real world applications (NanoXplore, ESA)
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Challenge: Synthesizing Recursion

factorial(1) = 1

:

3 * factorial(2)

4 * factorial(3)

factorial(4)

Stack Diagram

How large must the o

stack be?

HLS cannot determine the resource
requirements for hardware
implementation

Relies on dynamic & potentially
unbounded resources for its
operation



Challenge: Synthesizing Recursion

Tail Call Recursion: Recursive call is

12 * factorial(2) Stack Depth will the last statement in the function.
Stack stay constant : ; :
t e No further computation is required
after call returns
4 * factorial(3) Tail Call Optimization: Transform into
Stack iterative process where the current
"‘ stack frame is reused

factorial(4)

Stack



Challenge: Synthesizing Recursion

int fibonacci(int n) {
if (n == 0) {

return 0O;

return fibonacci(n - 1) +

fibonacci(n - 2);

Cannot replace the
current stack
frame

Non Tail Recursion: Operations are

performed after recursive call returns

e Because computation relies on
return value of recursive call, the
current stack frame cannot be
removed



Bambu'’s existing recursion support

e Bambu’'s frontend relies on GCC
e GCC can transform tail-call recursion
e Cannot transform non-tail recursion like fibonacci, ackerman, ...




Transforming Recursion to Iteration

Most Specialization Most

general, specific,
slow fast



Example: Factorial

unsigned int factorial(unsigned int n) { unsigned int factorial(unsigned int N)

if (n == 1) { int fact =1, 1i;

return 1; for (1 = 1; 1 <= N; i++) {

}

return n * factorial(n - 1);

fact *= 1i;
}

return fact;

Original recursion - Manually-written iteration
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Transforming Recursion to Iteration

Most
general,
slow

DSLs
Finite state machines

for generic recursion

Specialization Most

specific,
fast

Manual rewriting

for specific algorithms
Explicit stack

for single input recursion
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Bambu Recurse

e Explicit stack representation to transform non-tail call, single input recursion
to iteration

e Implemented inside Bambu
o Unlike MLIR-Recursion (Li 2024)

LLVM IR — Bambu —— Verilog

HLS

Recursive
C/C++

RecursionRemoval



Factorial: Designing the stack

Explicit limit on size

unsigned int factorial(unsigned int n) { fdefine MAX STACK SIZE 100
if (n == 1) { StackFrame stack[MAX STACK SIZE];

return 1;

}

return n * factorial(n - 1);

typedef struct { Arguments & active

int n; variables
int return value;

} StackFrame;

Initial values
push ((StackFrame) {.n

.return value =




Factorial: Using the stack

while (!is empty()) {

current frame = pop();

// result not ready

if (current frame.n == 0) {
result = 1; Base case

if (lis empty()) {

stack([top] .return value = result;

n=0, return=0

n=1, return=0




Factorial: Using the stack

while (!is empty()) { n=1, return=0

current frame = pop();

n=2, return=0

if (current frame.n == 0) {

}

else {

push ( (StackFrame) { .n current frame.n, .return value = 0});

push ( (StackFrame) { .n current frame.n - 1, .return value = 0});

Update recursive
argument



Factorial: Using the stack

n=1, return=1

while (!is empty()) {

current frame = pop(); n=2, return=0

// Result is ready

if (current frame.return value != 0) {

if (lis_empty()) {

stack[top] .return value = current frame.n * current frame.return value;

Operate on
recursive result
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Factorial: Using the stack

while (!is empty()) {

current frame = pop();
- n=2, return=1 result=2

// Result is ready

if (current frame.return value != 0) {
if (lis_empty()) {
stack[top] .return value = current frame.n * current frame.return value;
} /\
Operate on
else { recursive result

result = current frame.n * current frame.return value;




Ongoing Work - Implementation

: BB2 - GCCLI: 0 - HPL:

35171 -> local 9080
35229 -
35172 ->if(a =

35185 ->return _9081;

0 -Cer: 0 - Loop 0 - Executions: 0
35184 -> /* _9081 = gimple_phi(<_9082, BB5>, <b, BB2>) */

—_——_————_——_———n

-Cer: 0 - Loop 0 - Executions: 0
(int)(a + b);

BB2>, < 9087, BB4>) ¥/
al_9080, BB2>, <local_9089, BB4>) */

e ——

Original IR

BB2 - GCCLL: 0 -HPL: 0 - Cer: 0 - Loop 0 - Executions: 0
35171 -> local_9080 = (int)(a + b);
35230-> 9091 =-1;
35172->if (a )

BB4 - GCCLI: 1 - HPL: 0 - Cer: 0 - Loop 0 - Executions: 0

35202 -> /* a_9085 = gimple_phi(<a, BB2>, < 9087, BB4>)*/

35203 -> /* local_9088 = gimple_phi(<local_9080, BB2>, <local_9089, BB4>) */
35198 -> 908 (int)(a_9085 + (-1));

35192 -> x_90 ff(_9087, local_9088);

35205 -> local_9089 = (int)(_9087 + x_9090);

35209 -> if (9087 == (0))

BB5 - GCCLI: 0- HPL: 0 - Cer: 0 - Loop 0 - Executions: 0
35188 -> _9082 = (int)(a + x_9090);

BB3 - GCCLI: 0- HPL: 0- Cer: 0 - Loop 0 - Executions: 0
35184 -> /* 9081 = gimple_phi(<_9082, BB5>, <b, BB2>) */
35185 -> refurn _9081;

BB7 - GCCLI: 0- HPL: 0- Cer: 0 - Loop O - Executions: 0
35232 -> if (bambu_artificial_top != (-1))

Cer: 0 - Loop 0 - Executions: 0

Transformed IR
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Ongoing Work - Implementation

e Adding RecursionRemoval pass with explicit stack to Bambu
o Defining StackFrame
o Setting up stack abstraction
o Modifying basic block IR

typedef struct { Arguments & active
int n; variables

int return value;

} StackFrame;
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Ongoing Work - Challenges

e Recursion-to-iteration algorithms
e Open source software installation & documentation
e Modifying IR

BB2 - GCCLI: 0 - HPL: 0 - Cer: 0 - Loop 0 - Executions: 0
(int)a + b);

Cer: 0. Loop 0 - Executions: 0

4>) 4/
. phi(<local 9080, BB2>, <local 9089, B84>) */

)
1 9088);
35209 -> if (9087 ==

BB GocLE D HPL0- Can O2Tooh 0 Deaiions b
35184 -> /*_9081 = gimple_phi(<_9082, BB5>, <b, BB2>) */
33185 Zheturn _9081;
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Evaluation

Expressivity: What expressivity is
added to the Bambu HLS?

Single-input non-tail call recursion

Fibonacci
Ackerman
Heap sum
Quicksort

Performance: Is performance
comparable to manually-written
iterative equivalents?

e Verilator

lills
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Supporting recursion in Bambu HLS

e .
i ¥ Bambu HLS - Verilog




