
Bambu Recurse
Supporting recursion in Bambu HLS

Andrew Kim & Caspar Popova

1

Supporting recursion in Bambu HLS

Bambu HLSRecursive
C/C++ Verilog

2

RecursionRemoval

Why support recursion?

● Natural algorithm representation (traversal, backtracking, sort)
● Reduces rewriting effort compared to iterative counterparts
● Clarity, less complex than iterative implementations

3

Lack of Recursion Support

HLS tools: Bambu, Legup, Vitis

Bambu HLS:

● Full HLS pipeline
● Open Source
● Proven utility in real world applications (NanoXplore, ESA)

4

Challenge: Synthesizing Recursion

factorial(4)

4 * factorial(3)

3 * factorial(2)

…

factorial(1) = 1

Stack Diagram

● HLS cannot determine the resource
requirements for hardware
implementation

● Relies on dynamic & potentially
unbounded resources for its
operation

How large must the
stack be?

5

Challenge: Synthesizing Recursion

Tail Call Recursion: Recursive call is
the last statement in the function.

● No further computation is required
after call returns

Tail Call Optimization: Transform into
iterative process where the current
stack frame is reused

factorial(4)

Stack

4 * factorial(3)

Stack

12 * factorial(2)

Stack

Stack Depth will
stay constant

6

Challenge: Synthesizing Recursion

Non Tail Recursion: Operations are
performed after recursive call returns

● Because computation relies on
return value of recursive call, the
current stack frame cannot be
removed

int fibonacci(int n) {

 if (n == 0) {

 return 0;

 }

 ...

 return fibonacci(n - 1) +

 fibonacci(n - 2);

}

Cannot replace the
current stack

frame
7

Bambu’s existing recursion support

● Bambu’s frontend relies on GCC
● GCC can transform tail-call recursion
● Cannot transform non-tail recursion like fibonacci, ackerman, ...

8

Transforming Recursion to Iteration

SpecializationMost
general,

slow

Most
specific,

fast

9

Example: Factorial

Original recursion Manually-written iteration
10

unsigned int factorial(unsigned int n) {

 if (n == 1) {

 return 1;

 }

 return n * factorial(n - 1);

}

unsigned int factorial(unsigned int N) {

 int fact = 1, i;

 for (i = 1; i <= N; i++) {

 fact *= i;

 }

 return fact;

}

Transforming Recursion to Iteration

Explicit stack

for single input recursion

SpecializationMost
general,

slow

Most
specific,

fast

11

Manual rewriting

for specific algorithms

DSLs

Finite state machines

for generic recursion

Bambu Recurse

● Explicit stack representation to transform non-tail call, single input recursion
to iteration

● Implemented inside Bambu
○ Unlike MLIR-Recursion (Li 2024)

12

Bambu
HLS

Recursive
C/C++ VerilogMLIR LLVM IR

RecursionRemoval

Factorial: Designing the stack

typedef struct {

 int n;

 int return_value;

} StackFrame;

unsigned int factorial(unsigned int n) {

 if (n == 1) {

 return 1;

 }

 return n * factorial(n - 1);

}

#define MAX_STACK_SIZE 100

StackFrame stack[MAX_STACK_SIZE];

Explicit limit on size

Arguments & active
variables

push((StackFrame){.n = n,

 .return_value = 0});

Initial values

13

n=1, return=1n=1, return=0

Factorial: Using the stack
while (!is_empty()) {

 current_frame = pop();

 // result not ready

 if (current_frame.n == 0) {

 result = 1;

 if (!is_empty()) {

 stack[top].return_value = result;

 }

 }

14

Base case

n=0, return=0

…

…

Factorial: Using the stack

15

 else {

 push((StackFrame){.n = current_frame.n, .return_value = 0});

 push((StackFrame){.n = current_frame.n - 1, .return_value = 0});

 }

n=1, return=0

n=2, return=0

while (!is_empty()) {

 current_frame = pop();

 if (current_frame.n == 0) {

 ...

 }

n=2, return=0

Update recursive
argument

Factorial: Using the stack

 // Result is ready

 if (current_frame.return_value != 0) {

16

 if (!is_empty()) {

 stack[top].return_value = current_frame.n * current_frame.return_value;

 }
Operate on

recursive result

while (!is_empty()) {

 current_frame = pop();

…

n=2, return=0n=2, return=1

n=1, return=1

Factorial: Using the stack

 // Result is ready

 if (current_frame.return_value != 0) {

17

 if (!is_empty()) {

 stack[top].return_value = current_frame.n * current_frame.return_value;

 }

 else {

 result = current_frame.n * current_frame.return_value;

 }

 }

Operate on
recursive result

while (!is_empty()) {

 current_frame = pop();
n=2, return=1 result=2

Ongoing Work - Implementation

18

Original IR
Transformed IR

Ongoing Work - Implementation

● Adding RecursionRemoval pass with explicit stack to Bambu
○ Defining StackFrame
○ Setting up stack abstraction
○ Modifying basic block IR

19

typedef struct {

 int n;

 int return_value;

} StackFrame;

Arguments & active
variables

Ongoing Work - Challenges

● Recursion-to-iteration algorithms
● Open source software installation & documentation
● Modifying IR

20

// Insert BB_start_block into the top of IR

BB_start_block->add_pred(BB_entry->number);

BB_start_block->add_succ(first_block->number);

BB_entry->add_succ(BB_start_block->number);

first_block->add_pred(BB_start_block->number);

remove_BB(first_block->list_of_pred, 0);

remove_BB(BB_entry->list_of_succ, first_block->number);

Evaluation

Expressivity: What expressivity is
added to the Bambu HLS?

Single-input non-tail call recursion

● Fibonacci
● Ackerman
● Heap sum
● Quicksort

Performance: Is performance
comparable to manually-written
iterative equivalents?

● Verilator

21

Supporting recursion in Bambu HLS

22

Bambu HLSRecursive
C/C++

Verilog

RecursionRemoval

