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RecursionRemoval



Why support recursion?

● Natural algorithm representation (traversal, backtracking, sort)
● Reduces rewriting effort compared to iterative counterparts
● Clarity, less complex than iterative implementations
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Lack of Recursion Support

HLS tools: Bambu, Legup, Vitis 

Bambu HLS:

● Full HLS pipeline 
● Open Source
● Proven utility in real world applications (NanoXplore, ESA)
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Challenge: Synthesizing Recursion

factorial(4)

4 * factorial(3)

3 * factorial(2)

…

factorial(1) = 1

Stack Diagram

● HLS cannot determine the resource 
requirements for hardware 
implementation

● Relies on dynamic & potentially 
unbounded resources for its 
operation

How large must the 
stack be?
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Challenge: Synthesizing Recursion

Tail Call Recursion: Recursive call is 
the last statement in the function.

● No further computation is required 
after call returns

Tail Call Optimization: Transform into 
iterative process where the current 
stack frame is reused

factorial(4)

Stack

4 * factorial(3)

Stack

12 * factorial(2)

Stack

Stack Depth will 
stay constant
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Challenge: Synthesizing Recursion

Non Tail Recursion: Operations are 
performed after recursive call returns

● Because computation relies on 
return value of recursive call, the 
current stack frame cannot be 
removed

int fibonacci(int n) {

    if (n == 0) {

        return 0;

    }

    ...

    return fibonacci(n - 1) + 

           fibonacci(n - 2);

}   

Cannot replace the 
current stack 

frame
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Bambu’s existing recursion support

● Bambu’s frontend relies on GCC
● GCC can transform tail-call recursion
● Cannot transform non-tail recursion like fibonacci, ackerman, ...
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Transforming Recursion to Iteration

SpecializationMost 
general, 

slow

Most 
specific, 

fast
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Example: Factorial

Original recursion Manually-written iteration
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unsigned int factorial(unsigned int n) {

    if (n == 1) {

        return 1;

    }

    return n * factorial(n - 1);

}

unsigned int factorial(unsigned int N) {

    int fact = 1, i;

    for (i = 1; i <= N; i++) {

        fact *= i;

    }

    return fact;

}



Transforming Recursion to Iteration

Explicit stack 

for single input recursion

SpecializationMost 
general, 

slow

Most 
specific, 

fast
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Manual rewriting

for specific algorithms

DSLs

Finite state machines

for generic recursion



Bambu Recurse

● Explicit stack representation to transform non-tail call, single input recursion 
to iteration

● Implemented inside Bambu
○ Unlike MLIR-Recursion (Li 2024)
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Factorial: Designing the stack

typedef struct {

    int n;

    int return_value;

} StackFrame;

unsigned int factorial(unsigned int n) {

    if (n == 1) {

        return 1;

    }

    return n * factorial(n - 1);

}

#define MAX_STACK_SIZE 100

StackFrame stack[MAX_STACK_SIZE];

Explicit limit on size

Arguments & active 
variables

push((StackFrame){.n = n,

                .return_value = 0});

Initial values
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n=1, return=1n=1, return=0

Factorial: Using the stack
while (!is_empty()) {

        current_frame = pop();

        // result not ready

        if (current_frame.n == 0) {

            result = 1;

            if (!is_empty()) {

                stack[top].return_value = result;

            }

        }
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Base case

n=0, return=0

…



…

Factorial: Using the stack
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        else {

            push((StackFrame){.n = current_frame.n, .return_value = 0});

            push((StackFrame){.n = current_frame.n - 1, .return_value = 0});

        }

n=1, return=0

n=2, return=0

while (!is_empty()) {

        current_frame = pop();

        

        if (current_frame.n == 0) {

            ...

        }

n=2, return=0

Update recursive 
argument



Factorial: Using the stack

        // Result is ready

        if (current_frame.return_value != 0) {
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            if (!is_empty()) {

                stack[top].return_value = current_frame.n * current_frame.return_value;

            }
Operate on 

recursive result

while (!is_empty()) {

        current_frame = pop();

…

n=2, return=0n=2, return=1

n=1, return=1



Factorial: Using the stack

        // Result is ready

        if (current_frame.return_value != 0) {
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            if (!is_empty()) {

                stack[top].return_value = current_frame.n * current_frame.return_value;

            }

            else {

                result = current_frame.n * current_frame.return_value;

            }

        }

Operate on 
recursive result

while (!is_empty()) {

        current_frame = pop();
n=2, return=1 result=2



Ongoing Work - Implementation
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Original IR
Transformed IR



Ongoing Work - Implementation

● Adding RecursionRemoval pass with explicit stack to Bambu
○ Defining StackFrame
○ Setting up stack abstraction
○ Modifying basic block IR
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typedef struct {

    int n;

    int return_value;

} StackFrame;

Arguments & active 
variables



Ongoing Work - Challenges

● Recursion-to-iteration algorithms 
● Open source software installation & documentation
● Modifying IR
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// Insert BB_start_block into the top of IR 

BB_start_block->add_pred(BB_entry->number);

BB_start_block->add_succ(first_block->number);

BB_entry->add_succ(BB_start_block->number);

first_block->add_pred(BB_start_block->number);

remove_BB(first_block->list_of_pred, 0);

remove_BB(BB_entry->list_of_succ, first_block->number);



Evaluation

Expressivity: What expressivity is 
added to the Bambu HLS?

Single-input non-tail call recursion

● Fibonacci
● Ackerman
● Heap sum
● Quicksort

Performance: Is performance 
comparable to manually-written 
iterative equivalents?

● Verilator
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Supporting recursion in Bambu HLS
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