Bambu Recurse
Supporting recursion in Bambu HLS

Andrew Kim & Caspar Popova

Supporting recursion in Bambu HLS

Recursive
C/C++

.

Bambu HLS

RecursionRemoval

Verilog

.

Why support recursion?

e Natural algorithm representation (traversal, backtracking, sort)
e Reduces rewriting effort compared to iterative counterparts
e C(Clarity, less complex than iterative implementations

Lack of Recursion Support

HLS tools: Bambu, Legup, Vitis

Bambu HLS:

e Full HLS pipeline
e Open Source
e Proven utility in real world applications (NanoXplore, ESA)

W)

W XILINX
& Vs,

Challenge: Synthesizing Recursion

factorial(1) = 1

:

3 * factorial(2)

4 * factorial(3)

factorial(4)

Stack Diagram

How large must the o

stack be?

HLS cannot determine the resource
requirements for hardware
implementation

Relies on dynamic & potentially
unbounded resources for its
operation

Challenge: Synthesizing Recursion

Tail Call Recursion: Recursive call is

12 * factorial(2) Stack Depth will the last statement in the function.
Stack stay constant : ; :
t e No further computation is required
after call returns
4 * factorial(3) Tail Call Optimization: Transform into
Stack iterative process where the current
"‘ stack frame is reused

factorial(4)

Stack

Challenge: Synthesizing Recursion

int fibonacci(int n) {
if (n == 0) {

return 0O;

return fibonacci(n - 1) +

fibonacci(n - 2);

Cannot replace the
current stack
frame

Non Tail Recursion: Operations are

performed after recursive call returns

e Because computation relies on
return value of recursive call, the
current stack frame cannot be
removed

Bambu'’s existing recursion support

e Bambu’'s frontend relies on GCC
e GCC can transform tail-call recursion
e Cannot transform non-tail recursion like fibonacci, ackerman, ...

Transforming Recursion to Iteration

Most Specialization Most

general, specific,
slow fast

Example: Factorial

unsigned int factorial(unsigned int n) { unsigned int factorial(unsigned int N)

if (n == 1) { int fact =1, 1i;

return 1; for (1 = 1; 1 <= N; i++) {

}

return n * factorial(n - 1);

fact *= 1i;
}

return fact;

Original recursion - Manually-written iteration

10

Transforming Recursion to Iteration

Most
general,
slow

DSLs
Finite state machines

for generic recursion

Specialization Most

specific,
fast

Manual rewriting

for specific algorithms
Explicit stack

for single input recursion

11

Bambu Recurse

e Explicit stack representation to transform non-tail call, single input recursion
to iteration

e Implemented inside Bambu
o Unlike MLIR-Recursion (Li 2024)

LLVM IR — Bambu —— Verilog

HLS

Recursive
C/C++

RecursionRemoval

Factorial: Designing the stack

Explicit limit on size

unsigned int factorial(unsigned int n) { fdefine MAX STACK SIZE 100
if (n == 1) { StackFrame stack[MAX STACK SIZE];

return 1;

}

return n * factorial(n - 1);

typedef struct { Arguments & active

int n; variables
int return value;

} StackFrame;

Initial values
push ((StackFrame) {.n

.return value =

Factorial: Using the stack

while (!is empty()) {

current frame = pop();

// result not ready

if (current frame.n == 0) {
result = 1; Base case

if (lis empty()) {

stack([top] .return value = result;

n=0, return=0

n=1, return=0

Factorial: Using the stack

while (!is empty()) { n=1, return=0

current frame = pop();

n=2, return=0

if (current frame.n == 0) {

}

else {

push ((StackFrame) { .n current frame.n, .return value = 0});

push ((StackFrame) { .n current frame.n - 1, .return value = 0});

Update recursive
argument

Factorial: Using the stack

n=1, return=1

while (!is empty()) {

current frame = pop(); n=2, return=0

// Result is ready

if (current frame.return value != 0) {

if (lis_empty()) {

stack[top] .return value = current frame.n * current frame.return value;

Operate on
recursive result

16

Factorial: Using the stack

while (!is empty()) {

current frame = pop();
- n=2, return=1 result=2

// Result is ready

if (current frame.return value != 0) {
if (lis_empty()) {
stack[top] .return value = current frame.n * current frame.return value;
} /\
Operate on
else { recursive result

result = current frame.n * current frame.return value;

Ongoing Work - Implementation

: BB2 - GCCLI: 0 - HPL:

35171 -> local 9080
35229 -
35172 ->if(a =

35185 ->return _9081;

0 -Cer: 0 - Loop 0 - Executions: 0
35184 -> /* _9081 = gimple_phi(<_9082, BB5>, <b, BB2>) */

—_——_————_——_———n

-Cer: 0 - Loop 0 - Executions: 0
(int)(a + b);

BB2>, < 9087, BB4>) ¥/
al_9080, BB2>, <local_9089, BB4>) */

e ——

Original IR

BB2 - GCCLL: 0 -HPL: 0 - Cer: 0 - Loop 0 - Executions: 0
35171 -> local_9080 = (int)(a + b);
35230-> 9091 =-1;
35172->if (a)

BB4 - GCCLI: 1 - HPL: 0 - Cer: 0 - Loop 0 - Executions: 0

35202 -> /* a_9085 = gimple_phi(<a, BB2>, < 9087, BB4>)*/

35203 -> /* local_9088 = gimple_phi(<local_9080, BB2>, <local_9089, BB4>) */
35198 -> 908 (int)(a_9085 + (-1));

35192 -> x_90 ff(_9087, local_9088);

35205 -> local_9089 = (int)(_9087 + x_9090);

35209 -> if (9087 == (0))

BB5 - GCCLI: 0- HPL: 0 - Cer: 0 - Loop 0 - Executions: 0
35188 -> _9082 = (int)(a + x_9090);

BB3 - GCCLI: 0- HPL: 0- Cer: 0 - Loop 0 - Executions: 0
35184 -> /* 9081 = gimple_phi(<_9082, BB5>, <b, BB2>) */
35185 -> refurn _9081;

BB7 - GCCLI: 0- HPL: 0- Cer: 0 - Loop O - Executions: 0
35232 -> if (bambu_artificial_top != (-1))

Cer: 0 - Loop 0 - Executions: 0

Transformed IR

18

Ongoing Work - Implementation

e Adding RecursionRemoval pass with explicit stack to Bambu
o Defining StackFrame
o Setting up stack abstraction
o Modifying basic block IR

typedef struct { Arguments & active
int n; variables

int return value;

} StackFrame;

19

Ongoing Work - Challenges

e Recursion-to-iteration algorithms
e Open source software installation & documentation
e Modifying IR

BB2 - GCCLI: 0 - HPL: 0 - Cer: 0 - Loop 0 - Executions: 0
(int)a + b);

Cer: 0. Loop 0 - Executions: 0

4>) 4/
. phi(<local 9080, BB2>, <local 9089, B84>) */

)
1 9088);
35209 -> if (9087 ==

BB GocLE D HPL0- Can O2Tooh 0 Deaiions b
35184 -> /*_9081 = gimple_phi(<_9082, BB5>, <b, BB2>) */
33185 Zheturn _9081;

20

Evaluation

Expressivity: What expressivity is
added to the Bambu HLS?

Single-input non-tail call recursion

Fibonacci
Ackerman
Heap sum
Quicksort

Performance: Is performance
comparable to manually-written
iterative equivalents?

e Verilator

lills

21

Supporting recursion in Bambu HLS

e .
i ¥ Bambu HLS - Verilog

